

Prioritized Technology: High Specific Energy, Radiation Tolerant Primary Batteries Europa Lander

Capability Description

Summary of Primary Battery Cell Options

Cell Chemistry	Cell Specific Energy (Wh/kg)	Vendor(s)	Flight Heritage
Li/SO ₂	270	Saft	Huygens, Galileo Probe
LiSOCI ₂	350	Saft	MER, Deep Impact
Li/MnO ₂	210	Saft, Ultralife	None
Li/CF _x -MnO ₂	560	Eagle-Picher	None
Li/CF _x	730	Ray-O-Vac, Eagle-Picher	None

Discharge Conditions: 0°C and 50 mA

Li/CF_x based chemistry with aluminum cell casing only option that can meet requirement

Capability Status

- Survey options to meet cell level specific energy target
 - Review data sheet values
 - COTS cell testing and development of new cell designs with vendor
 - Iterate with the system teams to guide cell development and selection
 - Issued RFI after requirements had developed
- Early testing focused on Li/CF_x-MnO₂ chemistries
 - Can draw conclusions relative to Li/CF_x
 - Including more extensive evaluation of Li/CF_x for Lander going forward
 - Focusing more on higher temperatures (0 to 60°C)
- Constant current discharge testing at relevant rates and temperatures
- Initial heat evolution testing
- Initial radiation testing

Mission Applications

- Europa Lander Pre-Project
 - Provides 20 to 30 day mission life for a 100 kg battery package for the landed system
 - In addition to power, the batteries dissipate heat that is harvested for thermal management
 - High radiation and Planetary protection sterilization are critical requirements
- Also applicable to all short life mission concepts
 - Small bodies (Comets and Asteroids)
 - Icy Moon landers and probes
 - Any application where MMRTG or Solar power is not viable
 - High radiation environments
 - Stringent Planetary Protection applications

Development Cost and Schedule